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where N is given by N ~ 1/8 and 8 is the
angular width of the dot in radians.

Consider the slot admittant I’(O) for an
infinitesimal] y thin slot which is placed

along the equator of a perfectly conducting
sphere of radius a [1]
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The series does not converge since finite
contributions to the imaginary part of Y

are added forever, The admittance for a slot
of finite gap width a~, where ~<< 1 can be
written as [2]

Hence it follows that an upper bound for N

can be taken as N= 1/3. This condition
follows also immediately if in (3) the terms
in the round bracket are not to differ from

unity by more than e, when e is small, then—.
we must have n ~ #12c/6. Hence for

n<N, Y,,(c$)c YJO).

‘To evaluate the rest of the series (2)

whose terms will show more and more varia-

tion over the gap width as n gets larger, we

can make use of the asymptotic expression

for P. as M becomes large. Again retaining

first-order terms the remainder of the series
for the admittance of a finite slot can then

be written as

Remainder Y(c!)

r
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It is seen that this expression is similar
to Y(0), except that the Legendre functions
are those appropriate for a finite slot. W’e
will now show that the first few terms of
both series are approximately equal. This

comes about since the P.’s show little varia-
tion for small 6 in the range of rr/2 – IS/2 to

rr/~ +8/2 when n is not too large (recalling
that n gives the number of zeros that the

Legeudre function goes through in the
range of o from O to r). Here we can expand

1

7r+fi)

P. Cos —--l

( ‘2)

about P.(O) giving for

[P.(+) - P.(-)]’

(= [3P.’(O)]’ 1 – ~~:a’ + . . . ). (3)

Ignoring the 62 terms in the preceding

Taylor expansion and then substituting it

in (2) we obtain an approximate series for

Y(8) whose first few terms are those of the

infinitesimal slot expression Y(O). This ap-
proximation is valid for the first terms but

becomes unusable for the higher terms. Let

us denote by N the upper bound for the
summation index n for which this approxi-
mation is valid, i.e.,

Y(6) =fYn(o) +.... (4)
n-l

The validity of the preceding Taylor
expansion for Pm determines N. The zeros

of the Legendre function are almost uni-
formly distributed in the range of 0 from O

to m. Thus the number of zeros within the
range of 6 should be approximately equal to

h/~. Now for the two-term Taylor expan-
sion to be valid, tbe Legendre function must
not vary much over the gap width. This can
be stated in terms of the number of zeros
which are included in the gap region as
&z/m< 1. This condition ensures that the
slot does not extend beyond the first maxi-

mum of Pm(cos d) on either side of @= m/2.

G– H,,+*(2) (ka)

= ~ Y.(a) (5)

where the Hankel function terms in the

denominator of Y are approximated for
large n as n/ka. The terms in the remainder

series converge as I/@, whereas the remain-

ing terms in the series for the infinitesimal

slot diverge. An estimate of the remainder

(5) can be obtained by noting that

i Y.(o) < M 5 1/.’ (6)
.-N+! n-w+!

where M is a constant. The series of 1/ns
terms can be summed by converting to a
contour integral with poles along the real
axis, which can then be deformed to a path
parallel to the imaginary axis. By changing

variables the resulting integral can be esti-
mated yielding

g I/%’<c& (7)
11-N+2

where c is another constant. Thus the slot

admittance can be written as

Y(a) = ~ Y.(O) + 0(1/N2). 8)
“=1

IrI case the exact value of the remainder
series is desired,

+ Ym(lJ)
“-l

can be evaluated in closed form [3]. The
remainder (5) can then be obtained by sub-

tracting the sum of the first N terms, and

then can be used to approximate the exact
remainder to (2).

Thus it can be concluded that the ad-
mittance of a finite slot can be reasonably

approximated by the generally divergent
expression for the admittance of an in-
finitesimally narrow slot by summing the
series to the first N terms, where N is given

by N= 1/$, and C?is the angular width of the

slot in radians. The error created in 1leaving
off the remaining terms is then of the order
o(l/iW).
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Propagation of the Quasi-TEN[

Mode in Ferrite-Filled

Coaxial Line

Brodwin and Miller,l in discussing the
propagation of the quasi-TEM mode in fer-
rite-filled coaxial line, were apparently un-

aware of an earlier comprehensive tu-eat-
ment of the subject.z’3 For purpose of
comparison, the notations in this corre-

spondence correspond to, those used by
Brodwin and Miller.

In the earlier treatment, the Suhl and

\Valker approximation fnr parallel plane

geometry was extended to coaxial genmetry

by requiring that the conditions

l.s, /R2<il, 1.SIR2 <<1, Is, [l?,< <l,

]s2\R, <<l (1)

be satisfied where R, and R, are the outer
and inner radii, respective y, of the coaxial
line.’,’ If conditions (1) are subst~ tuted
directly into the exact determinantal equa-

tion for the quasi-TEM mode in coaxial
geometry,4 the determinantal equation re-

duces tos

’02=-w+] ‘2)
for nontrivial values of .S, and S2.

For parallel plane geometry, (;!) is
known as the Suhl and tValker approxima-

tion to the propagation constant of the
quasi-TEM mode. It can be shown by di-
rect substitution into the (exact determ iutal
equation that (2) is valid in parallel plane
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* Percent deviation of SU1

TABLE I

S&l S~R~ SIR~ SZR2 Percent Deviation*

1.06 3 0.65 2.40 j 1.46 3.7 percent
0.383 j 0.311 0.86 j 0.70 0.4 percent
0.383 j 0.311 2.39 i 1.87 3.8 percent
0.196 j 0.177 0.44 j 0.40 <0.1 percent
0.196 j 0.177 1.37 j 1.24 0.7 percent
0.126 j 0.119 0.28
0.126

i 0.27 <0.03 percent
j 0.119 0.88 j 0.83 not calculated

and Walker Approximation from numerical solution.

geometry for either set of the following con-

(3)

(4)

the
higher and lower parallel- plates, respec-

tively. Since the restriction xl= O does not
alter- the parallel plane geometry, conditions
(3) and (4) may be considered as equivalent

conditions.

For coaxial geometry, conditions (1) au-

tomatically imply

15’I I(R, - R,)<< 1, IS, I (R, - R,)<< 1 (5)

but (5) does not necessarily imply (1) since

RI #O. If conditions (5) are substituted di-
rectly into the determinantal equation with
the additional constraint that conditions
(1) are violated, the determinantal equa-
tion becomes identically zero regardless of
whether the propagation constant is given

by (2) or not. The fact that conditions (5)

do not uniquely define the propagation of

the quasi-TEM mode is not too surpris-
ing, since ‘(unrolled” coaxial line is not per-

fectly analogous to parallel plane geometry,

In parallel plane geometry, higher order
modes are cut off for sufficiently small spac-

ing between planes whereas in large radius
coaxial line higher order modes can propa-
gate despite the spacing between conduc-
tors.c

Conditions (1) are both necessary and
sufficient conditions for propagation of the

quasi-TEM mode in coaxial geometry so

that all other modes are cut off. Under these

conditions, the propagation constant is
given approximately by (2). The solution

for the quasi-TEM mode in coaxial geom-

etry was first reported in 19576 and sub-

sequently in 1959.3
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Authors’ comment?

We wish to thank Mr. Weiner for bring-

ing his work to our attention. While it is

true that the determinantal equation does
reduce to zero for small arguments if the
Suhl and Walker approximation holds, we
do not believe that the small argument re-
striction is necessary, As reported in our pa-
per, the Suhl and Walker approximation
was found to deviate from numerical solu-

tions of the determinantal equation by only
a few percent over a wide range of magnetic

fields and outer radii for a given material

and inner radius.
Table I summarizes calculations which

demonstrate that, even for large argumeuts,
the Suhl and Walker approximation is

quite useful.
These calculations were carried out for the

following parameters: frequency 1.5 Gc/s,
4rM8=680 q,, c,=ll.5, R,= O.125 inch. The
magnetic field is normalized to the resonant
field, 536 Oe, and the ratio R2/Rl = 2.25 cor-

responds to 50-ohm, air-filled coaxial line.

The first line of Table I presents an ex-

ample in which the arguments are large, but

the deviation is small enough for engineer.

ing purposes.
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