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where N is given by N<1/6and 6 is the
angular width of the slot in radians.

Consider the slot admittant Y(0) for an
infinitesimally thin slot which is placed
along the equator of a perfectly conducting
sphere of radius a [1]
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The series does not converge since finite
contributions to the imaginary part of V¥
are added forever. The admittance for a slot
of finite gap width a8, where 61 can be
written as [2]

¥ =

CORRESPONDENCE

Hence it follows that an upper bound for NV
can be taken as N=1/8. This condition
follows also immediately if in (3) the terms
in the round bracket are not to differ from
unity by more than ¢, when ¢ is small, then
we must have n<+/12¢/s. Hence for
n<N, V,(8)= V,(0).

To evaluate the rest of the series (2)
whose terms will show more and more varia-
tion over the gap width as n gets larger, we
can make use of the asymptotic expression
for P, as » becomes large. Again retaining
first-order terms the remainder of the series
for the admittance of a finite slot can then
be written as

Remainder Y (3)

m4+1 [P" (COS [_ 2]) — (COS 1:-5)]

Y(a)—z Y<a>—f—”z

It is seen that this expression is similar
to ¥(0), except that the Legendre functions
are those appropriate for a finite slot. We
will now show that the first few terms of
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both series are approximately equal. This
comes about since the P,'s show little varia-
tion for small 8 in the range of =/2—8/2 to
7/2-+8/2 when n is not too large (recalling
that » gives the number of zeros that the
Legendre function goes through in the
range of # from 0 to x). Here we can expand
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Ignoring the & terms in the preceding
Taylor expansion and then substituting it
in (2) we obtain an approximate series for
¥(8) whose first few terms are those of the
infinitesimal slot expression ¥(0). This ap-
proximation is valid for the first terms but
becomes unusable for the higher terms. Let
us denote by N the upper bound for the
summation index n for which this approxi-
mation is valid, i.e.,
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The validity of the preceding Taylor
expansion for P, determines N. The zeros
of the Legendre function are almost uni-
formly distributed in the range of 6 from 0
to w. Thus the number of zeros within the
range of & should be approximately equal to
én/m. Now for the two-term Taylor expan-
sion to be valid, the Legendre function must
not vary much over the gap width. This can
be stated in terms of the number of zeros
which are included in the gap region as
sn/r<1. This condition ensures that the
slot does not extend beyond the first maxi-
mum of P,(cos 8) on either side of §=1/2.

where the Hankel function terms in the
denominator of ¥ are approximated for
large n as n/ka. The terms in the remainder
series converge as 1/#%, whereas the remain-
ing terms in the series for the infinitesimal
slot diverge. An estimate of the remainder
(5) can be obtained by noting that

S ne <M S i (6

A=N|-2 =N

where M is a constant. The series of 1/n®
terms can be summed by converting to a
contour integral with poles along the real
axis, which can then be deformed to a path
parallel to the imaginary axis. By changing
variables the resulting integral can be esti-
mated yielding

Z 1/n2 < C—==

R=N42

7
(N+2)2 @

where C is another constant. Thus the slot
admittance can be written as

= i Y,(0) -+ O(1/N9). 8)

n=1

Y

In case the exact value of the remainder
series is desired,

S V)

can be evaluated in closed form [3]. The
remainder (5) can then be obtained by sub-
tracting the sum of the first N terms, and
then can be used to approximate the exact
remainder to (2).

Thus it can be concluded that the ad-
mittance of a finite slot can be reasonably
approximated by the generally divergent
expression for the admittance of an in-
finitesimally narrow slot by summing the
series to the first N terms, where NV is given
by N=1/5, and 8 is the angular width of the

49

slot in radians. The error created in Jeaving

off the remaining terms is then of the order
O(1/N%).

M. A. ProNus

Dept. of Elec. Engrg.

Northwestern University
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Propagation of the Quasi-TEM
Mode in Ferrite-Filled
Coaxial Line

Brodwin and Miller,! in discussing the
propagation of the quasi-TEM mode in fer-
rite-filled coaxial line, were apparently un-
aware of an earlier comprehensive treat-
ment of the subject.2® For purpose of
comparison, the notations in this corre-
spondence correspond to those used by
Brodwin and Miller.

In the earlier treatment, the Suhl and
Walker approximation for parallel plane
geometry was extended to coaxial geometry
by requiring that the conditions

[5:]Ra 1, |2 Rk, | S1| ik 1,
|S:l Rt (1)

be satisfied where R; and R; are the outer
and inner radii, respectively, of the coaxial
line.#® If conditions (1) are substituted
directly into the exact determinantal equa-
tion for the quasi-TEM mode in coaxial
geometry,! the determinantal equation re-

duces to®
2 k2
e[£22] )

for nontrivial values of S; and Ss.

For parallel plane geometry, (2) is
known as the Suhl and Walker approxima-
tion to the propagation constant of the
quasi-TEM mode. It can be shown by di-
rect substitution into the exact determintal
equation that (2) is valid in parallel plane
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TABLE 1
H, Re/Ry SiRy SeRy S1iRa SeR2 Percent Deviation*
0.75 2.25 1.06 i 0.65 2.40 7 1.46 3.7 percent
1.2 2.25 0.383 i 0.311 0.86 7 0.70 0.4 percent
1.2 6.0 0.383 i 0.311 2.39 7 1.87 3.8 percent
2.0 2.25 0.196 J 0.177 0.44 7 0.40 <0.1 percent
2.0 7.0 0.196 7 0.177 1.37 7 1.24 0.7 percent
3.0 2.25 0.126 J 0.119 0.28 7 0.27 <0.03 percent
3.0 7.0 0.126 i 0.119 0.88 7 0.83 not calculated

* Percent deviation of Suhl and Walker Approximation from numerical solution.

geometry for either set of the following con-
ditions:

S| < 1, | Sam| < 1, | Sun ] < 1,

[Sm] <1 (3)
or
[Si] e — m] <1, [So] o — m] 1 (@)

where x; and x, are the positions of the
higher and lower parallel plates, respec-
tively. Since the restriction x,=0 does not
alter the parallel plane geometry, conditions
(3) and (4) may be considered as equivalent
conditions.

For coaxial geometry, conditions (1) au-
tomatically imply

[ S [(Re— R) <1, | S| (R — RYy <1 (5)

but (5) does not necessarily imply (1) since
R,5#0. If conditions (5) are substituted di-
rectly into the determinantal equation with
the additional constraint that conditions
(1) are violated, the determinantal equa-
tion becomes identically zero regardless of
whether the propagation constant is given
by (2) or not. The fact that conditions (5)

do not uniquely define the propagation of
the quasi-TEM mode is not too surpris-
ing, since “unrolled” coaxial line is not per-
fectly analogous to parallel plane geometry.
In parallel plane geometry, higher order
modes are cut off for sufficiently small spac-
ing between planes whereas in large radius
coaxial line higher order modes can propa-
gate despite the spacing between conduc-
tors.®
Conditions (1) are both necessary and
sufficient conditions for propagation of the
quasi-TEM mode in coaxial geometry so
that all other modes are cut off. Under these
conditions, the propagation constant is
given approximately by (2). The solution
for the quasi-TEM mode in coaxial geom-
etry was first reported in 19575 and sub-
sequently in 19593
M. M. WEINER
Advanced Research Dept.
Edgerton, Germeshausen, and Grier, Inc.
Boston, Mass.

8 S. Ramo and J. R. Whinnery, Fields and Waves
in Modern Radio, 2nd ed. New York: Wiley, p. 365.

JANUARY

Authors’ comment’

We wish to thank Mr. Weiner for bring-
ing his work to our attention. While it is
true that the determinantal equation does
reduce to zero for small arguments if the
Suhl and Walker approximation holds, we
do not believe that the small argument re-
striction is necessary. As reported in our pa-
per, the Suhl and Walker approximation
was found to deviate from numerical solu-
tions of the determinantal equation by only
a few percent over a wide range of magnetic
fields and outer radii for a given material
and inner radius.

Table I summarizes calculations which
demonstrate that, even for large arguments,
the Suhl and Walker approximation is
quite useful.

These calculations were carried out for the
following parameters: frequency 1.5 Gce/s,
47 M,=680 q., e=11.5, R;=0.125 inch. The
magnetic field is normalized to the resonant
field, 536 Oe, and the ratio Rs/R;=2.25 cor-
responds to 50-ohm, air-filled coaxial line.

The first line of Table I presents an ex-
ample in which the arguments are large, but
the deviation is small enough for engineer-
ing purposes.
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